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of

APPROXIMATE SOLUTION FOR A LAMINAR FLOW OVER A FLAT PLATE

WITH SUCTION AND PRESSURE GRADIENT

by

George Francesco D'Amore

Statement of Problem
2 This thesis derives and analyzes an approximate veloci-

ty solution that represents a suction flow over a flat
plate. The solution is derived from the momentum integral
equation in terms of the suction and pressure gradient pa-
rameters. These parameters are adjusted until flow separa-
tion is achieved. Further analysis is done with displace-
ment thickness, momentum thickness, and friction. Other
proven solutions are compared with this analysis.

Sources of Data
The information was collected through a literature

review of journals, books, and goverment publications. This
included the original studies dated from 1945 to present.
The solutions derived were analyzed through computer graph-
ics and data output.

Conclusions Reached
G The approximate solution is in good agreement with the

Blasius solution for zero suction and zero pressure gra-
dient. Increasing suction velocity prevents or delays flow
separation, and permits a flow to withstand higher adverse
pressure gradient. The solution is limited to a suction
parameter equal to -2 and consequently an optimum suction
velocity is found. Suction velocity decreases the boundary
layer thickness, and adverse pressure gradient increases the
boundary layer thickness. /I
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Chapter 1

Introduction

This thesis derives an approximate solution to study

the effects of suction for flow on a flat plate. Most

available solutions are in terms of either pressure gradient

only, as in the solution proposed by Pohlhausen, or in terms

of suction velocity alone. One purpose of this study is to

derive a velocity profile that is easy to adjust for chang-

ing suction and pressure gradient parameters. Another ob-

jective of this thesis is to analyze the newly derived

velocity profile and to observe the effects that suction and

pressure gradient have on the approximate velocity profile.

A dimensionless velocity profile is solved in terms of

suction and pressure gradient parameters. Pohlhausen

assumed a fourth order polynomial which is also assumed in

this thesis; however, different boundary conditions are

used. The boundary conditions proposed by Torda are used in

Chapter 3 along with the proposed fourth order polynomial to

solve the approximate velocity profile used throughout this

thesis. The approximate velocity profile is used to analyze

the effects of suction and pressure gradient by observing

displacement thickness, momentum thickness, and shear stress
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at the wall.

The flow being analyzed is limited to a steady, two-

dimensional, incompressible, laminar flow. Pressure gra-

dient is limited to the point of separation. Another pur-

pose of this thesis is to observe the movement of separation

profile as suction is applied to the derived velocity pro-

file equation. The entire solution is in dimensionless form

where u /U. is restricted to remain between the limits of

zero and one. If u /U. were to exceed the set limits, the

flow could not be considered a steady flow.

In Chapter 2 the momentum equation is derived with the

suction term; this equation then enables the critical suc-

tion velocity to be computed. The suction velocity needed

to keep a flow from separating is derived in Chaper 4 by use

of the momentum equation. The derived equations from Chap-

ter 3 (dimensionless velocity profile, displacement thick-

ness, momentum thickness, and wall shear stress) are com-

pared with the solution of Blasius in Chapter 4 and analyzed

for the different suction and pressure gradient parameters

which are then tabulated and shown graphically.



CHAPTER 2

Derivation of Boundary Layer Equations with Suction

2.1 Derivation of the Boundary Layer Equations

The Navier-Stokes equations have been the primary equa-

tions for solving fluid flow problems. Prandtl simplified

the Navier-Stokes equations by eliminating some of the terms

to develop the boundary layer equations.

The complete Navier-Stokes equations for two-dimen-

sional flow are:

au au Ou 4u la)p / 2u a 2u a 2u
+u- + v- + w = - -- + V + + (1)

Jt 4x y Jz PJx x 4y2

/2 2 2

-+ u-+ v,-+ - --- + V 2 + + - (2)
at ax 4y 4z payx y )

The boundary conditions to be satisfied once the boundary

layer equation is derived will be:

at y - 0; u -6, v -6

at y -S; u- U0

Since the flow on the flat plate is a steady flow only

in the two dimensions of x and y, the Navier-Stokes equa-

tions can be simplified because:

Z22

Jlu av J u J~v du Ov

w- - w- T - "-- - ; - = -=
az Jz rt at

3
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The Navier-Stokes equations can be reduced to boundary

layer form by estimating the order of magnitude of each

quantity as proposed by Prandtl. By letting the free stream

velocity UN be the unit of magnitude for velocity, the

terms of the boundary layer equations can be put into non-

dimensional form. The boundary layer thickness S is

assumed to be very small compared with x:

u v p
UO - ; V' - ; p, m

UM UM PUo,

x y

L L L

where L is the boundary length.

For the order of magnitudes

u" - 1 since u changes from 6 to UM

v'1 - since y changes from S to S

x- 1

y"=

Re 1I /S2

Both u and v are functions of x and y.

As a result of the preceding assumptions, the order of

magnitude of other terms can be determined as followso

-- 1 r I -- o 

Superscripts refer to endnotes on page 78.
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au 1 4 u 1 1

2,

Sx2 S

av" S a2vt S I

. - = I ; 1- = =-

With these newly derived terms, Equations I and 2 can be

rewritten into non-dimensional form as follows:

A u " CU. " I4P 1 a 2 U u
U.,- + V'- - -- + -+ -i -- (3)

)xl 4y YO ax" Re ax 2 +y 2

For the y direction:

.bP' 1 v. p (a2 V. a2v''
u' - + v'- = - - +- - + (4)

ay" y" Re x ay'2

The order of magnitude of the inertial terms equals the

order of magnitude of the viscous terms in Equations 3 and

4. Since I is smaller than 1/&2 in Equation 3, a2u" /ax' 2

can be neglected. The order of magnitude of I /Re is 2 2

As a result Equation 3 becomes the x-direction of Prandtl's

original boundary-layer equation:



u u la 2-

Applying the same analysis of Equation 3 to Equation

4, shows that (I /P)6P /ay = S, which implies that

(1 /P)aP /ay = 10 since S is very small I rhe final forms

-for the boundary layer equations are:

u - + v- = _ + -- V (5)
4x ay Pa~x aY2

The continuity equation is:

- + - Me (7)
a x ay

Conditions outside the boundary-layer are:

u -UCV ; v - 0 ; a~u lay = J2u /ay2 . 0 ; Y = 0

Applying these conditions to the x-direction momentum equa-

tion, Equation 5, leads to:

U,(dU, /dx) = -(1 /P) dP /dx

Now the revised version of Equation 5 is:

4)u au dUcO J
u+ v - - U0 -- + Y8

ax Cy dx ;_y2

The boundary conditions are:

at y -0 u uB0 ,v -

at yi ; u -UW
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The Prandtl equations describe the flow of fluid with-

out the effect of pressure gradient or suction, whereas

Pohthausen solved the problem of boundary layer flow with

variable pressure gradient, but without suction.

Pohihausen's approximate method is based on the momentum

equation. The momentum equation is derived from Prandtl's

boundary layer equation and is often referred to as the

von Karman momentum-integral equation.

2.2 Derivation of the Momentum-Intearal E quation

Using Prandtl's boundary layer equation, Equation 8,

and integrating it with respect to y, from y - 6 at the wall

of the surface to y - W, yields:

f a u au dUau
V_ u- v- U- )dy-vY - (9). C) \€x a)y Udx )d ay 10)

The fluid flow also satisfies the equation of continuity:

%u )v

ax ay

By separating the terms algebraically and integrating

each term into the continuity equation, suction v0 can be

introduced into the equation as follows:

hv ou

ay CNx

Integrating each term with respect to y yieldse



ay joy
Jv - dy

vl - V1-. = "'-d

Therefore, the normal velocity component v(y) is:

v(y) - v(s) -(1)

and v(8) is the velocity at the wall, or as in this case,

v(8) is the suction term. Pohlhausen did not apply suction

and consequently v(e) = 0.

In Pohlhausen's approximate solution the normal velocity

term used in the momentum-integral equation is:

v(y) - - dy (11)

Je Jx

The shear stress is known to be o -P(t u /6y) where 1o is

shear stress at the wall. To agree with the momentum equa-

tion P and P are substituted so that:

au
o" -Pv- (12)

Equation 9 is rewritten with the substitution of the

new terms, Equations 11 and 12. The variable, y, is the

distance from the surface to a point in the free stream

identified by y - h.

h au au fau dU - 3

ax ay CJ ) y U ) dy P



Integration by parts is used to resolve the normal

velocity integral. The rule for integration by parts is:

L mdn - mn ndm

To define terms, let:

m -dy , dn- - dy , dm -dy ,n u
ToC) ax y C)x

Combining and substituting the terms gives:

fh(u f udy)dy = uf Udy -
. ay x - u-axdy

at y = 8, u - 8

at y = h, u = Ui

Therefore the right side of the above equation becomes:

h-dy - uUdy 
(14)

UCef Cx 11 x

Substituting Expression 14 into Equation 13 develops

the momentum equation into: 4

u- dy - y +f u-dy r -dy = -

e ax Ufe Cx C)x - dx

which can be condensed to:

f h( aau d r
(2u-dy -U6

U - - -x dx = -(

Since U,,- f(x) and u - f(x,y), and:

dU u
+ - U-x(UL ) - ud

4)x dx a



then, Equation 14 can be rewritten as:

- (u) + -(uu., - +- u J dy -

axa x dx P

The above equation is condensed into terms that are more

recognizable as displacement thickness and momentum

thickness:

-(uU 0 - u ) + -(U - U) dy = - (16)

J a0 \x dx P

By definition , - displacement thickness, where:

S, =f I - dy

After factoring U* out,

SI UN =f (UN - u)dy

Displacement thickness is the measure of the necessary

displacement of the potential flow from the surface to

offset the formation of the increasing size of the boundary

layer as distance along the flat plate increases. The

stream lines for the potential flow outside the boundary

layer are deflected a distance 91. The deflection is due

to the effects of friction near the flat plate. Figure 2.1

shows the definition of displacement thickness where area A

and area B are equal. Also, by definition 92 is equal to

momentum thickness, where:

62 f u - dy
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XX

Figure 2.1

Displacement of Potential Flow

The momentum thickness is defined to be the measure of

the loss of momentum in the boundary layer. This is quite

similar to displacement thickness where potential flow is;

measured.

The expression 6 /ax, can be taken outside the integral

in Equation 16. The limit (0, so) is independent of x and

the general momentum equation becomes:

d I 2 dU E U o

dx dx P

The general momentum equation is further expanded to:

S2 + -2 d ( *

dx U. \dx )/\ S P11w

Pohlhausen used this equation to solve his flow problem with

variable pressure gradient. In this thesis the same problem



12

is solved but with suction. This is done by applying the

suction term to the momentum equation. As seen previously,

Equation 16 is:

v(y) = v(8) ' y -dy

which is then substituted into Equation 9 to solve for the

momentum equation with suction. It is solved the same way

as the momentum equation without suction. The final solu-

tion is:

d U dUN U" 0- E- 2 OD2 + Sl m + U o  -
dx dx P

which is expanded to:

udS2  dU o
+ (2-2 + Sl )UM-" + Uv O =-

dx dx p

Therefore the momentum equation with suction is:

2 + L 0 (17)

dx U. dx S2 U0  PU0
2

The term v0 is the suction velocity (or blowing)

through the wall. By using the momentum equation, Equation

11, the critical suction required to keep the flow from

separation is found. To have separation, adverse pressure

gradient is necessary. Chapter 3 derives an approximate

velocity profile that is used in the momentum equation in

order to find the suction velocity necessary to prevent

separation. The velocity profile is derived in terms of

suction and pressure gradient.



CHAPTER 3

Approximate Solution with Suction

To show the effects of suction on a boundary layer a

method similar to Pohihausen's approximate solution is used.

However, according to Torda, Pohlhausen's boundary condi-

tions created a problem when used with his fourth order

polynomial. A certain suction velocity value caused the

equation to approach infinity which is not realistic in

actual flow. Torda explained that this problem would be

avoided by changing the boundary conditions and the boundary

layer equation.
6

3.1 Derivation of the Non-dimensional Velocity Eauation

Pohlhausen's non-dimensional velocity polynomial is:

U2 3 4
- all + b l + cl3 + dil (1)
UW

where I is a non-dimensional term defined as y /S. Appen-

dix A explains in detail how Pohlhausen derived the veloc-

ity, displacement thickness, and momentum thickness equa-

tions. The boundary conditions used by Pohlhausen are not

the same as those proposed by Torda. Pohlhausen's approxi-

mate solution shows the effects of favorable and adverse

pressure gradient on a flow. Adding suction to the flow

13
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changes the reaction of the flow. Suction from a wall

affects the flow and separation for different values of

adverse pressure. The diverse changes of a flow due to

pressure gradient and suction are shown in Chapter 4.

The boundary conditions used are:

at y - 0 (11 = 0), u = 8, v = B

at y = 9 (11 = 1), u U, au /ay = a2u /4y = 8

The boundary layer equation from Chapter 2 is:

u- + v- ( + V 2)a x ay P L4 (Wy )

Outside the boundary layer u is constant and equal to U, and

ju /4x = S. Also, v is zero causing Equation 2 to become:

IaP dUw
- -- - U- (3)

Pax dx

Substituting Equation 3 into the boundary layer equation,

Equation 2, yields:

Ju dU* ( ,2u
V - = Um- +V

0 ay dxla2

The derivative of Equation 4 yields another boundary equa-

tion at y - 8:
1)2 u 3 u

The first and second derivatives of Pohlhausen-s polynomial,

Equation 1, yield:
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4u 2 3
- = a + 2bql + 3c11 + 4d1 (5)

2u

= 2b + 6cl + 12dql2  (6)

At y - S (11 = 1), Equations 5 and 6 equal zero along the

boundary layer. Velocity u is a constant U. outside the

boundary layer flow and is a function of y below the bound-

ary layer. Figure 3.1 shows the effects of a velocity pro-

file at the plate surface and at the boundary layer thick-

ness. The profile changes when suction is applied.

Figure 3.1

Velocity Flow Profile
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Substituting the above boundary conditions into Equations 5

and 6 respectively yields:

a u

-=0= a + b + 3c + 4d (7)

,2u

- - 6 2b + 6c + 12d (8)
4Y2

Since u UC at y - , (11 - 1), Equation 1 becomes:

U
- ==a +b + c d (9)

At the wall, where y - B (11 = 8), the derivative of Equation

6 becomes:

43u
- = 6c + 24d1

r) 3

)3u

- = 6c (10)

Applying the same conditions as those used for Equation 10

to Equations 5 and 6 yields:

u
-, a (11)
ay

,2u

- 2b (12)

4 y2

The terms in Equation 4 and its derivative are kept in non-

dimensional form where I = y /S; thus Ju /ay, 42u /ay 2 , and

, u /)y can be rewritten using the chain rule:
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w-- - - - -- (13)
O)y a'4 ay d

a)2 u . a_(u I) I j 2 u 1 4 2u 411

therefore:
2u 1 42 u

- - (14)

:) 3u j( 2  3u) 4 :2 a

-3 2- ;12 la- S2 m2 3 1 y

therefore:

a3 u Ia3:3u 1 :3u

- -(15)

Substituting Equations 11 and 12 into Equation 4 solves the

equation in terms the flow of fluid without the effects of

pressure gradient or suction, whereas Pohihausen solved the

problem of boundary layer flow with variable pressure gra-

dient, but without suction. Inserting Pohlhausen's approxi-

mate method results of Equations 7 and 8, and the expres-

sions of Equations 13 and 14 into Equation 4 gives:

v dUW V
-(a) - U"- + -(2b) (16)
S dx S

The same procedure is used with the derivative of Equation 4

for Equations 8, 16, 14, and 15.

I



VI

-(2b) T n 6c) (17)

The objective now is to combine and rearrange the

equations formed so that the coefficients of Equation I can

be solved. The equations to be solved need to be in terms

of suction and pressure gradient. According to Pohlhausen

the dimensionless parameter, N - (S2 /v)dU, /dx, will

account for the pressure change that is involved in fluid

flow. Since dP /dx = (-PU,)dU, /dx, the dimensionless

parameter N = (-&2 /(PU,))dP /dx.7 Consequently U. is

affected by the pressure change as the flow proceeds.

Iglish theorized the development of suction flow with-

out pressure gradient, and the term he used to account for

suction is M = v0 9 /V. 8 The terms M and N will be incor-

porated into the newly derived equations of: u /U., shear,

displacement thickness S,, and momentum thickness S2" To

solve for the terms a, b, c, and d, multiply Equation 16 by

3 /l.

Vo  UO dUm V
3a) 3- - + (6b) (18)

S 3S dx ?

Summing Equations 17 and 18 yields:

v o  U= dUm V
;-(3a + 2b) - 3-d- +-6(b + c) (19)
6 S dx 6

To put Equation 19 in terms of th* coefficients b and c,

multiply Equation 9 by four and subtract Equation 7 from it.
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This will yield:

4 - c - 3a + 2b

which is substituted into Equation 19 giving:

vo  Uc dU V
S 2 ( 4 - C) - 3-dx S 0 + C)

From Equation 17, b , 3Vc /voS. After substituting coeffi-

cient b into the above equation, coefficient c is solved as:

3 UmdL6Z 4v0

S dx S2
C "(26)

18v2  6v v

v -4 + -S3 + -Z

Multiplying the numerator and denominator of Equation 29 by

v4 /2vof /v will leave the coefficient c in terms of the suc-

tion parameter M and the pressure gradient parameter N.

3 UdUm , 3S

dx , Z( 1ev V v,4
v34 062 V,2}

Therefore:

3wd6 v. S 3vo2 2
dx V% V2

+ 2

v0
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To convert coefficient c into terms of M and N, write:

-3MN + 4M
2

C 2 (21)

(18 + dim + M )

Coefficient b is 3Vc /v 0 - 3c /M. Substituting Equation

21 into the term for b gives:

3C-3N + 4M]
b = 2 (22)

(18 + 6Mi + M2 )

From the expression 4 - c = 3a + b, coefficient a is solved

as:

4 - 2b - c
a =

3

Substituting Equations 21 and 22 into the preceding equation

for coefficient a yields:

24 + 6N + HN
at 2 (23)

(18 + 6M + M 2 )

To obtain the coefficient d, Equation 7 is used:

6 = a + 2b + 3c + 4d (7)

Again substituting Equations 21 and 22 along with Equation

23 into Equation 7 and solving for the coefficient d yields:

-6 + 3N + 2MN -6M -3M
2

d, =2(24) (18 + 6Mi M2 )

Equation I is now written in its full and complete form. To

help alleviate the congestion of terms let D - 18 + 6M + M2 .
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u /UO - (241r + 121112 + 414 2 q -36+'6 - 3M 2)4) / D

+ (N ((6 + M)q - 9q2 -3M + (3 + 2) / D
(25)

Equation 25 expresses the flow for various suction and

pressure gradient parameters. For various values of M and

N, the different separation locations are found. Whereas,

Pohlhausen's equation, derived in Appendix A, shows flow

reactions that are dependent only on variable pressure

gradients.

3.2 Derivation of the Shear Stress Equation

The shear stress at the wall where the flow begins sepa-

ration is zero. Applying the same principle used by

Pohlhausen and shown in Appendix A leads to:

( = a and

To keep the equations in non-dimensional form, Equation 13

is used.

After substituting Equation 23 into the above expressions,

the shear stress equation is derived in terms of suction and

pressure gradient as:

-toS 24 + 4N + MN
-'-- - (26)

IU0 18 + 6i + M2
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3.3 Derivation of the Displacement Thickness Eauation

Solving for displacement thickness Sl is a tedious

process because of the inherent multiple computations of

approximate methods. By definition, we know that:

Keeping S non-dimensional and using I - y /S, gives:

r1 "I -= dl where dq has the limits 8 to I.

Substituting Equation I into the above expression for 9 / 9

yields:

( 1- (all+bll +c1 +d 4))dl4

Integrating S I / S gives:

S I ( a,12 bq13 c'rt4 d1 5 )

it - - - - (27)2 3 4 5 1

After expanding the above equation and combining common

terms, Equation 27 becomes:

I-(60 - 30a - 20b - 15c - 12d) (28)
66

Using Equation 23 the term 39a, yields:

30a - (720 + ISON + 39M) / D

Using Equation 22 in the term 29b, gives:

20b - (-18N + 249M) / D

With the aid of Equation 21 the term 15c yields:
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15c = (-45MIN + 68M2) / D

and, the last term, 12d, is found with Equation 24.

12d = (-72 + 36N + 24MN - 72M - 36M2) / D

Taking these four derived terms and substituting them back

into Equation 28 yields the non-dimensional displacement

thickness:

I = -(432 - 36N - 9M + 192M + 3.6&12) (29)

68D

where D is (18 + 6M + M
2).

3.4 Derivation of the Momentum Thickness Equation

The momentum thickness S2 is defined as:

= f w 1 dy
Uf ( o Md

Writing S2 into non-dimensional form, S2 /S becomes:

S2 u_(u ) 2 )()
S M - M d11 

(30)

Equation 36 is expanded to decrease the mathematical compu-

tations and is rewritten as:

:2f d -fd (31)

The equation, f (u /U*)dl, has been worked out already and

is equivalent to (I - Equation 29) giving:

-d1l- (648 + 36N + 9 + 168M + 24M)/ 6D (32)
0UM
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The second term of Equation 31 is much more involved

than the first term since Equation 25 is squared. Equation

1 could have been assumed to be a second or third order

polynomial to help ease the numerous calculations, however

accuracy would have been compromised. Schlichting stated

that assuming a polynomial with more than four coefficients

would not increase the accuracy of the approximate solu-

tion.9 It should be noted that Schlichting was referring to

Pohlhausen's solution of flow. Pohlhausen's solution does

not involve suction. Equation 25 does include suction along

with pressure gradient.

In reference to Equation I and the second term of

Equation 31, (u /U) 2, becomes:(t)2 = (al) + abl3 + act) + ad) + ba + b 1 + bcl 5

+ bd'l6 * call4 + cbl 5 + c2 16 + cd'l7 + da)5

+ db'1
6 + dc')7 + d2q 8

Collecting terms yields:

S = a2 12 + 2abq13 + 2ac'14 + 2ad1l5 + b 24 + 2bc1 5

+ 2bd)
6 + c2I 6 + 2cdq

7 + d2 18

Integrating the above equation as described in Equation 31

gives:

I
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( 2 11 3  abl 4  2act, ad 6  b2 q5  bc1 6

3-d - + - + - + - + - +

j2 3 5 3 5 3

2bdWl? c 217  cd1ll8  d2119 N
7 7 4 9 /

Then after applying the limits, the above equation becomes:3 2o
fl 7a ab 2ac ad b bc

3 2 5 3 5 3

2bd c 2  cd d2

7 7 4 9

Collecting terms and simplifying them gives:

f l( ) 2  2- d'i - (1 /1269)(429& +. 630ab + 594ac

". 428ad +. 252b 24 429bc 4. 366bd

" 18ec2 + 315cd + 148d 2 )

(33)

With further collection and simplification of terms Equation

33 becomes:

f do 2 - ( 1/1269)( a(428a + 639b + 54c)

+ b(429c + 252b) + c(188c)

+ d(148d + 429a + 368b + 315c)

(34)
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The terms a, b, c, and d which are Equations 23, 22, 21, and

24 respectively are then substituted into Equation 34. This

task is very involved and quite tedious. The work showing

the derivation of S62 /S is further shown in Appendix B.

From Appendix B the momentum thickness equation is:

2 2
= (58464 - 729N + 94StN + 48832M + 12816 612N

- 3903MN2 + 624M 2N - 39j4N2 + 78113 N + 1873

+ 144M4 ) / (1266(18 + 611 + M2 ) 2 ) (35)

I

i ......... , ..... .... ... .., = ........ .. ........



CHAPTER 4

Analysis of Approximate Solution with Suction

4.1 Comparison of Approximate Solution with Blasius

The previous two chapters went into detail deriving the

necessary equations to analyze suction flow over a flat

plate. It was also necessary to involve the effects of

pressure gradient which adjusts the flow whether suction is

applied or not. The equations in Chapter 3 had two param-

eters that were variable--suction and pressure gradient.

Some of the equations are very long and involved. To

study the accuracy of this approximate solution for suction

flow, it is necessary to check the approximate method

against proven data given by Blasius and other authors.

Blasius' data is based on no pressure gradient and no

suction. To compare the thesis solution with the Blasius

solution the integral momentum equation derived in Chapter 2

is used.

dr*2 * 2 (dx" I vO 1
dx (i~) 2 +.~ a.~ pU02dx dx S 2 U ,PU,

Using the same assumptions as Blasius, where there is no

suction or pressure gradient to contend with, the integral

momentum equation is reduced to a more simple form. For the

27
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problem considered, Blasius assumed the free stream velocity

UN to be constant outside the boundary layer and not a func-

tion of x; consequently, dU, /dx equals zero. The revised

integral momentum equation is:

df 2 /dx - Tr0 /PUw 2  (1)

In order to solve this equation using the approximate

method, a velocity profile must be assumed which is shown in

Equation 25 from Chapter 3. After applying the conditions

stated above, the velocity profile equation becomes:

u /UW - (2411 + 61 4 ) /18 (2)

The boundary conditions for this flow arer

y - S (11 - 6), u - S (f(Wl) - 6)

y " S (Ml " 1) u " UNo ( f <1) ,, )

where u /U. - f(M) - (241 + 61 4 ) /18

By definition, shear stress at the surface of the plate

To ist

TO.. (# (3)

Using the chain rule and the expression, I - y /S, Equation

3 is revised as:

Expanding 10 with the use of the expression, u ,Uf(D)

yieldst

I
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_ _ _ (4)

Substituting Equation 2 into Equation 4 gives the shear

stress at the surface with no suction and no pressure gra-

dient applied. Equation 5 is used later to derive the

coefficient of drag.

1 0- -PU(24 /18)(1 /S) (5)

The objective now is to find the value of S in Equation 5

so it can be substituted into the shear stress equation.

Taking the momentum thickness S2 as specified in Equa-

tion 35 from Chapter 3 and applying to it the conditions of

no suction and no pressure gradient, simplifies the momentum

thickness S2 /6 as#

S -2 /S - 9.143 (6)

Substituting Equations 5 and 6 into Equation 1 gives:

d 1 f 24 1)

-(9.143S) I - - IU- (7)
dx PU,2  18 f/

Equation 7 is then rearranged to:

U2 d 24 VUO

U -(. 143S) "- (8)
dx 18 S

Simplifying and integrating Equation 8 yields:

S 2 24 Vx
6.143-- -- (9)

2 18 UO
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Equation 9 finally yields the thesis boundary layer thick-

ness S that can be compared with the boundary layer thick-

ness derived by Blasius. The term S is a function of x,

(S - S(x)). From Equation 9, S(x) is found as:

C(x) - 4.318 .! vx /U. (16)

Blasius' solution for boundary layer thickness is:

C(x) t 5.8 Vx (11)

As observed when comparing Equations 16 and 11, the Blasius

solution and this thesis solution for boundary layer thick-

ness differ by thirteen percent. The non-dimensional veloc-

ity profile u /U. can be solved by substituting Equation 18

into Equation 2 where I - y /S(x). The velocity profile

then becomes:

u 24/ .~6 4 j
U 18 \4.318 vx 318

where the limits are:

o S y 4 U. /vx S 5

Figure 4.1 shows how the approximate velocity profile com-

pares with Blasius. The comparison is close for a no suc-

tion and no pressure gradient flow.

The shear stress at the wall for no suction and no

pressure gradient is found by substituting Equation 18 into

Equation 5 which yields:
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o k18/\4.318ie x

The above equation then reduces to:

1 -0.309 FU w  Uw /xV (12)

Equation 12 is the solution of shear stress by the approxi-

mate method with no suction and no pressure gradient. TO has

a 6.9 percent error when compared to Blasius.

The displacement thickness 61 is solved in Equation 32

from Chapter 3. Since 6 1 is to be compared with Blasius,

again the terms M and N are assumed zero. The result is

61 - (6.4). The term S is equal to 4.318 4 Yx /U..

Substituting S into the equation for S1 gives:

S1 1 1.727 4 vX 750 (13)

The values of SI from Blasius' solution and Equation 13 are

almost exact. The same procedures used to find S1, I1, and

u /UN are used to find the momentum thickness S2* Taking

Equation 35 from Chapter 3 and assuming no suction and no

pressure gradient then 62 - (S.143)(S). Therefore 62

becomes:

62 - 6.617 4 -VX1UW (14)

The difference between Equation 14 and Blasius" solution is

6.8 percent.

Other approximations have been made and compared with

Blasius, but none of the other solutions included suction

and pressure gradient simultaneously. Table 4.2 shows how
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other approximations made by Pohlhausen and Prandtl compared

with Blasius and the proposed approximation of this

thesis.19 Figure 4.2 is a graphical display of Table 4.1.

Figure 4.1 compares Blasius' solution and the solution of

this thesis. The thesis solution is quite similar when it

is reduced to a no suction and no pressure gradient

condi t ion.

Blasius Thesis Linear Prandtl Pohlhausen

S(x) 5.8 4.318 3.464 4.64 5.835

S 1 1.729 1.727 1.732 1.740 1.7505

S 2 0.664 0.617 8.577 9.645 6.687

If i8.332 9.389 8.288 6.322 8.343

fl(S) -- 1.333 1.6 1.5 2.6

Table 4.1

Comparison of the Integral Momentum Method

and the Blasius Solution

Key for table symbolsg

SWx - K1 .! -x /UW

S2 = K3

-r0  a K4 (uUo) U6/(x)

V'(9) - a(u /U ) /411
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The coefficient of drag CD is a function of shear

stress and the area of the plate yielding:

C 0 (AREA) 2(1C O  , - (15)
(1/2) PUO2(AREA) PUM

Since only one side of the plate is being analyzed, it would

2be appropriate to use (1/2 )CD so that CD - V /PUJ. Taking

Equation 5 and rearranging it to solve for o' where suction

and pressure gradient are present, Ir becomes:0
24 + 6N + MN

P0"' _ ( _2 -- -- -- (16)

.F- s+ m + m 2

The term, Re, is Reynolds number and it is defined as

Re - Ucx /v.

Substituting one-half of Equation 16 into Equation 15 gives:

/24dN+ MNI 1
CD " (.18 + 6N + 2  (17)

To compare Equation 17 with the Blasius solution the

terms N and M are equated to zero. Figures 4.3 and 4.4 show

the Blasius and thesis solutions to be equal at M and N

equal to zero. Equation 17 will deviate from the Blasius

solution as the term M is varied. This is shown in Figure

4.3. As suction Is increased along with Re, the coefficient

of drag is limited by the term M. Figure 4.5 shows that

when M Is approximately equal to -3 the CD plot reaches its

maximum value.

i
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Hermann Schlichting , 6th rev. ed. (Now York: McGraw Hill,
1968), p. 371.
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As negative M further increases the calculated drag

coefficient decreases. For these reasons the solution

developed in this thesis is not valid beyond M - -2.12

Figure 4.5 shows how the coefficient of drag is affected by

the suction term M when pressure gradient is not present.

This thesis agrees exactly with the results presented by

J.B. Edwards in an article on laminar flow. 1 3 The coeffi-

cient of drag between the two studies begins diverging at

M - -2; therefore the value of M in this thesis is limited

to a value of -2 and greater. Figures 4.3 and 4.4 also

confirm this fact. When v 0 /UO - -9.681 at Re - 1.6,

which is equivalent to M - -1, the two plots agree. When
5

Re - 18e and v 0 /Ul - -0.81, M becomes -6.316. This

comparison is quite reasonable between the graphs only up to

Reynolds number equal to 5 K aad for M equivalent to or

greater than -2.

Suction varies with Reynolds number in order to main-

tain a constant suction parameter M. It is observed that

too much suction can be disruptive to a laminar flow. An

optimum suction to Keep a flow laminar for Re - 188 is found

to be v 0 /Ua - 1.3 * is4 . In summary only a small amount

of suction is necessary to Keep a flow laminar that is nor-

mally considered in the non-laminar range (Re > 2.5 * 166)

The necessary v 0 /Us that will keep a flow laminar is

effective as long as it does not exceed M - -2.
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4.

The solution deviates at values of M < -2 and does not

reflect a true reaction beyond the limit. Edwards' equation

was also limited at M - -2, but he was able to overcome that

limitation with another function.

4.2 Suction and Pressure Gradient at Seoaration

From Chapter 3 the velocity profile was in the form of:

u01) - U,(all + b112 + c€ 3 + d114 ) (18)

On the right hand side of Equation 18 each coefficient has

the term, D - 18 61 + M 2 , in the denominator which is

shown in Equation 25 from Chapter 3. The denominator has no

real roots; the imaginary roots are 3 t 3F1. 1 4 Conse-

quently Equation 25 will not be infinite for any value of M

where M is a function of suction v0 . Torda observed that

the velocity profile would approach infinity if certain

boundary conditions were used. This also caused the coeffi-

cient a to be independent of suction which meant that the

velocity and separation would not be affected by suction.

Torda later suggested the now boundary conditions used in

Chapter 3. The suggested boundary conditions did correct

the problem of coefficient a approaching infinity caused by

M in the denominator.
15

The separation point is located where the wall shear

stress is zero. Shear stress is #PCu /I)(%)' /y).
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Taking Equation 25 from Chapter 3 and substituting it into

the expression, 4u /all - 6, yields:

uJ 24 + 6N + MN
- -6t (19)
J11 0 I+(18 614 + M2 )s

Expanding Equation 19 and solving for N gives:

N - -24 /(6 + M) (26)

Equation 26 describes the pressure gradient as a func-

tion of suction where M - vo0 /Y. Pohlhausen's solution

to a similar flow without suction was N - -12. Torda also

initially derived the separation pressure gradient as

N - -12, but the boundary conditions caused the suction to

be ineffective on the flow and separation. Appendix C shows

the difference between the solutions of Pohlhausen and this

thesis for separation point.

Table 4.2 lists the pressure gradient at separation for

each suction term M. The term M can also apply to blowing.

Blowing is positive M and suction is negative 1.

P1 -2 -1 6 1 2

N -6 -4.8 -4 -3.42 -2.66

Table 4.2

Separation Pressure Gradient with Suction

To have separation, adverse pressure gradient must

.I
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exist. As suction increases the fluid flow is able to

remain laminar with more adverse pressure which means that

the separation of flow can be averted or delayed.

Figure 4.6 depicts Pohlhausen's velocity profile.

Figures 4.7 through 4.9 show the velocity profile of this

thesis as a function of the suction term M and various

values of pressure gradient until separation occurs.

4.3 Seoaration Velocity

As a fluid flows over a flat plate, drag will eventual-

ly cause the pressure gradient to become adverse and this

will cause separation to occur. To help prevent or delay

separation, suction is used. It is possible to find the

amount of suction velocity required to keep the flow laminar

and free from separation. Prandtl was able to find the

velocity of suction that would prevent separation by using

the momentum equation solved in Equation 11, Chapter 2.16

Prandtl used Pohlhausen's velocity profile which is a func-

tion of pressure gradient only. In this thesis to find the

effects of suction velocity and pressure gradient, Equation

25 from Chapter 3 is used for the velocity profile. Table

4.2 shows that with the suction parameter being zero, the

critical pressure gradient at separation is N - -4. Substi-

tuting M - 9 and N - -4 into the velocity profile equation

the revised equation for velocity is:

u /UW a 2l2 - A4 (21)
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Equation 21 is used in the definition of displacement

thickness S! givings

:1 f( - )d1 f (0 - 2112 + 14 ) d11 (22)

Solving Equation 22 yields S , 6.5333. To verify the

above calculations, Equation 29 from Chapter 3 shows the

same results. To find the momentum thickness S2' Equation

22 is used in the definition of S2 givings

]d14 [414 - 4116 + 1183)d1

(23)

Equation 23 yields S2 - 0.126P. To check the thesis

results, Equation 35 from Chapter 3 was compared and gave

the same answer.

As stated and assumed by Prandtl the momentum boundary

layer thickness is assumed constant which means that

d(S 2 ) /dx - 0. In a general flow over an arbitrarily

shaped body, the free stream velocity will vary (U,(x)).

It is known that T0 /P - S at separation, therefore the

integral momentum equation stated early in this chapter

reduces to

S 62 + no_- ._

U dx ) (

Solving for the suction velocity yieldse

VO - -(2S2 + SI)dU, /dx (24)

I
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Substituting S1 /S - 0.5333 and S2 /S - 8.1269 into

Equation 24 yieldst

0 - -0.7871 dU, /dx (25)

Applying the conditions just stated to the original boundary

layer equation, Equation 3 from Chapter 21 and knowing that

the velocity u is not a function of the plate length

x(Ju /ax - 9)1 the revised momentum equation becomes:

Y ( ay o M dx

As stated earlier in this thesis:

au Cu a u u

Substituting Equation 21 into Equation 26 yields:

au /ay - (U,0 /S)(4A - 41 3 ) (27)

Taking the partial derivitive of Equation 27 at the plate

surface gives:

(3 2 u / y 2 ) °  ((/2
0- 4(U /S2) (28)

At the surface, y - 8, (4u /ay), M I. Putting Equations 27

and 28 into Equation 26 and solving for S yields:

6 - 2 4 -V(dx /dU.) (29)

Substituting Equation 29 into Equation 25 gives the required

suction velocity that will enable a flow to remain laminar

at the separation point. The result is:

v - -1.574 4 -VdU, /dx (36)
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Prandtl using Pohihausen's separation proFile showed

that suction can be used to prevent separation. Howarth's

separation profile which is more accurate showed at separa-

tion thats

v- -1.697 4 -vdU, /dx (31)

Howarth assumed 1 1 2 1 and dUw  / dx to be constant 1
17

and worked the momentum equation with zero suction. The

thesis Equation 36 does agree with Howarth's Equation 31

quite closely, and it is clear that this thesis solution for

a non-suction flow does agree with existing data.

This thesis shows that as suction is increased separa-

tion is delayed. Therefore suction will delay the separa-

tion and keep the flow laminar until the critical stage of

separation is exceeded. Table 4.3 summarizes the data com-

puted for other various suction values. As the suction

increases the boundary layer thickness increases up to the

point of separation. The increase of adverse pressure grad-

ient for increasing suction explains the increasing boundary

layer thickness at separation. The suction velocity permits

the flow to remain laminar longer thus making the boundary

layer thickness appear to increase.

4.4 Displacement Thickness

In Chapter 3 the displacement thickness S was derived

in terms of suction and pressure gradient. As described

before, SI is the mass flow deficit in the boundary layer.
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N N & / 9 (r* 262) EKI] £K2 I

0 -4.8 0.5333 0.7871 2.999 -1.5742

-1 -4.8 0.52 0.776 2.190 -1.699

-2 -6.6 S.5 9.756 2.449 -1.851

Table 4.3

Separation of Flow Data for

Various Suction Velocities

Key for table symbols:

Q v9 - [F* 2S2 ]6dU, /dx

S - EK II-vdx /dU,

v. - [K 2 ] -vdU, /dx

When suction is applied the displacement thickness should

decrease since the mass flow essentially has been displaced

closer to the flat plate due to the suction force. The

previous section showed how the velocity flow compared to

Blasius when the suction and pressure gradient were zeroed

out. Equation 29 from Chapter 3 gives the displacement

thickness ass

S - (432 - 36N - 9M * 192 + 36M2) /69D

When M and N each equal zero, S1 - (S.4)Si" Substituting

S - 4.318 Vx /U, into the S1 equation yields:

1 1.727J vx /U*. This solution is in excellent
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agreement with Blasius'solution for St. The same proce-

dure is used for various values of the suction parameter M

and the pressure gradient parameter N.

The limits for M and N are shown in Table 4.2. It

serves no purpose to go beyond the separation point; a

steady flow is assumed so that u /U. is not greater than

one and not less than zero. Figure 4.10 graphically shows

how the displacement thickness decreases as the suction

velocity increases. To counteract the suction force, pres-

sure gradient is adjusted until the point of separation is

reached. Increasing adverse pressure gradient will cause

the displacement thickness to increase. Figures 4.11 and

4.12 show how the pressure gradient affects the mass flow

for varying suction parameters. Figures 4.16 through 4.12

are assumed to have the same boundary layer thickness as

Blasius so that the effects of suction and pressure gradient

on a flow can be compared.

4.5 Momentum Thickness

The separaton profile of a flow can also be analyzed

through momentum flux which is explained by momentum thick-

ness. The flow of a fluid near the surface where the suc-

tion is applied may have insufficient momentum to continue.

The result may be either a stalled flow or a turbulent flow.
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If the Reynolds number is high enough to keep the flow

moving, which is normally the case, the flow becomes turbu-

lent.

Equation 35 from Chapter 3 is the thesis solution for

momentum thickness. It was shown how closely this solution

compared with the Blasius solution when suction and pressure

gradient were zero. Comparing the thesis solution with

Pohihausen's solution showed the solutions to react similarly

when adverse pressure was applied.

Figures 4.13 through 4.15 show the reactions as suction

and pressure gradient change. Increasing pressure gradient

increases the momentum thickness initially, however the

thickness decreases at the half-way mark toward separation

pressure gradient. The half-way mark is where the flow

profile changes shape and direction. The momentum thick-

nesses at zero pressure gradient and at separation pressure

gradient approach each other as suction velocity increases.

This indicates that extreme suction (M < -2) can cause a

flow to transition into a turbulent flow. How suction and

Reynolds number affect each other is explained in Section

4.1.

Figures 4.3 and 4.5 show that increasing suction

increases the skin friction which also relates to the causes

of separation.
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The values of vo /UW and Reynolds number dictate the value

of M and whether or not the solution is in the laminar

region. Any value of M less than -2 is considered in the

turbulent region. The thesis solution pertains only to

laminar flow. Figures 4.13 through 4.15 show that momentum

thickness is affected by suction flow, and that at the

separation point the momentum thickness deviates very

slightly.



CHAPTER 5

Concl usi ons

The purpose of this thesis was to study suction flow

over a flat plate and to observe the flow reaction with

pressure gradient. The objective was to derive an approxi-

mate velocity profile in terms of pressure gradient and

suction parameters. This was accomplished by using

Pohlhausen's assumed fourth order polynomial with different

boundary layer conditions later proposed by Torda. The

approximate velocity profile derived in Chapter 3 was used

to further analyze the derived solution.

The approximate velocity profile clearly showed that

suction velocity is benefical in preventing or delaying flow

separation. This thesis solution only applied to small

values of suction (v0 /Use - 0.Se2 or less) and to Re - 108

or less. Figures 4.7 through 4.9 amplified the point of how

suction and pressure gradient can manipulate a flow reaction

up to the separation point. In observing the graphs for

drag caused by friction the thesis was less accurate for the

value of M less than -2 which is in the realm of turbulent

flow. The thesis did not address turbulence nor was it

applicable for turbulent flaw.
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As the suction parameter decreased (more suction added)

the coefficient of drag increased. The combined reactions

of suction and friction helped to delay flow separation.

Suction can force the flow to separate simply because the

momentum of the flow exceeds the viscous force. It was

observed that the laminar range for Reynolds number extended

as suction velocity was added. Normally the limit for zero

6suction, laminar flow is Re - 2.5 X 1S . Adding suction

where v o /U* - 0.001 would keep the flow laminar for Reynolds

number up to 5 X 1.6. As the Reynolds number increased to

0 a, less suction, v 0 /U0 - 1.3 X 10 - 4 , was needed to

keep the flow laminar. Adding more suction at this Reynolds

number would cause a non-laminar situation. This shows that

suction does help keep a flow laminar for increasing

Reynolds number but with limitations. This set the limit of

the approximate solution at M - -2. The figures showing

velocity profile clearly showed that at M - -2 the suction

flow patterns changed direction which also indicates the

same limit to this approximate solution.

The solutions behaved with the predicted patterns for

suction flow and changing pressure gradient within the set

limits. For comparing the thesis solution with other proven

solutions a common denominator of zero suction was studied.

Pohlhausen showed separation to occur at N m -12, the thesis

at N - -4. The difference is caused by the use of different



. ..- - i rI

62

boundary conditions. When Pohihausen's conditions were used

the solutions agreed at N - -12, however the coefficient

used to find separation values eventually equaled infinity.

Consequently different boundary conditions were used to

overcome this as proposed by Torda. The thesis agreed with

Howarth's prediction for the necessary suction velocity

needed to maintain laminar flow at separation (N - -4). As

suction was added the separation was moved further down-

stream by simply permitting more adverse pressure gradient

to react on the flow.

The reason for using a fourth order polynomial to

approximate the velocity profile was that it would yield a

zero second-derivative at the plate surface which was a

boundary condition. The approximate solution implies that a

definite boundary layer existsl whereas an exact solution

assumes that the boundary layer extends indefinitey.

The thesis solution has an advantage in that a boundary

layer can be assumed and the necessary suction and pressure

gradient parameters can be substituted into the equation to

analyze the flow and thickness. Another advantage of the

thesis is that the assumed boundary conditions prevented the

velocity profile from going infinite for any suction parame-

ter. The boundary conditions proposed by Pohlhausen caused

the velocity flow to become infinite for M - -6 which is not

a realistic solution, thereby Justifying a new set of
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boundary conditions.

A problem encountered was the definitions of terms from

other studies. A noted difference existed in the use of the

terms I and M. In this thesis I - y /S; in other studies

Sy /(2S), 11 - y /(J2)s or I - 2y /S. Another

difference was with the value for MI the thesis value was

M - (Vo /U ) fR, whereas in other studies

M - (vo /U )f-/2. Another noted problem was that some

exact studies had their graphs and charts based on parame-

ters that were most convenient to their studies, and it was

not possible to duplicate the same parameters due to the

complexity of terms in the approximate solutions. It was

more convenient to compare the thesis approximate solution

with other approximate solutions due to the similarity of

their methods.

The following conclusions are made about the thesis

approximate solution for suction flows

1. The approximate solution is in good agreement with

Blasius solution when suction and pressure gradient are

zero.

2. At separation the approximate solution agreed with

Howarth's prediction for a no suction flow.

3. Increasing suction velocity does help prevent or

delay flow separation. Suction enables the flow to with-

stand higher adverse pressure further downstream where the
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separation flow pattern is formed. More suction permits

more adverse pressure gradient to react on the flow.

4. The suction velocity required to keep a flow lami-

nar at separation point increased with increasing suction

velocity. The cause for this is that as suction increases

the separation adverse pressure gradient increases.

5. Increasing suction parameter made the velocity

profile fuller but not as full as Pohlhausen's and other

solutions. The velocity profile reached its maximum full-

ness at M - -2 before reversing the reaction of suction,

thereby making the approximation solution limited.

6. Momentum flux shown by the momentum thickness

varied with adverse pressure by initially increasing and

then decreasing as separation flow was reached. Thesis

approximate solution agreed with Pohlhausen's solution. In-

creasing suction parameter decreases momentum thickness.

7. A possible solution to overcome the cancellation of

a term in the assumed velocity profile equation at H - 9 may

be obtained by assuming a fifth order polynomial instead of

a fourth order polynomial. This may also permit the assumed

profile to be more full.



APPENDIX A

Flow Distribution with Pressure Gradient

Pohlhausens approximate method was used to solve the

velocity distribution and was based on von Karman's momentum

equation. A fourth order polynomial was assumed by

Pohlhausen to represent the flow; he worked the equation

in non-dimensional form. Pohlhausen's velocity profile is:

u /U w m &I + bl C113 + d 4  where A - y /S

The momentum equation from Prandtl for the x-direction is:

1W au dU a 2u
u- + v+ --- " * I' (1)
ax d y dx ay

Boundary conditions for a steady, two-dimensional flow over

a wall &re:

t y -- (1  ) u ,, v mS,

at y S (11 -1), U - U*, au lay - a2u /ay 2 - S

therefore:

a - + 2bM + 3c 2 + 4d1l (2)

2u

- 2b + 6cl1 + 12dA 2  (3)

At y - S which implies A - 1, Equations 2 and 3 become:

45
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au

- - 1 + 2b + 3c + 4d
ay

1 S 1 2b + 6c + 12d
2

At y - S (1 - 0), Equation 3 reduces to 2u/€)y2 1 2b.

From Equation 1, Um (dU. /dx) - 1 /P(dP /dx) and

dP /dx - S. The term, Ue,(dUW /dx), equals zero. Conse-

2 2
quently 1)u /Ix 0 S. Substituting the boundary condi-

tions into Equations 1 and 3, knowing that a2u /Iy2 - 2b,

coefficient b becomes zero. Solving Equations 2 and 3

simultaneously yields that a - 2d. At y ( 1 - 1), the

equation for u /U,, becomes:

u
- I -- a+ b + c + d
UW

Since b - 6, the equation is revised to:

I a+ c + d (4)

The equation, a 1 2d, now is substituted into Equation 4

giving: 1 - 3d 4 c (5)

Solving Equations 4 and 5 simultaneously yields d - 1;

substituting coefficient d into the equation a - 2d, deter-

mines that a - 2. Substituting the coefficients a and d

into Equation 4, solves c - -2. Therefore the coefficients

are defined as:

a - 2, b - 0, c - -2p d - I
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It is known that separation will occur with adverse

pressure. The condition for separation is:

Au

-,y IyinS

To analyze the velocity profile in terms of pressure gra-

dient each of the coefficients (a, b, c, d) can be written

in terms of pressure gradient p. Redefining the coeffi-

cients to a', b'l, c', and d' where a' - a + p, b' - b + p,

c'- c + p, and d' - d + p; will enable the velocity profile

equation to be solved in terms of the dimensionless coeffi-

cient p. The coefficient p is later solved in terms of the

pressure gradient N where N - (92 /Y)dU0 /dx. N multi-

plied by a constant is equal to p. Substituting a' - a + p

into Equation 2 at y - (II - ) will initiate the steps

to solving the coeficients (a, b, c, d) in terms of pressure

gradient. Due to separation at the surface, a' - 0. Since

a - 2, then p - -2. At y - 9, Equation 2 becomes:

* - 2b' + 3c' + 4d' (6)

and Equation 3 becomes:

* - 2b' + 6c' + 12d' (7)

Solving Equations 6 and 7 simultaneously, gives:

8d' + 3c' - S (8)

At y f , (1 - 1) :

u
"1 I - b' + c' + d' (9)

UM
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Solving Equations 7 and 9 together leaves:

-2 - 4c' + led' (18)

When Equations 8 and 16 are solved simultaneously, d' , 3.

Since d' - d + p and d - 1, then p - 2.

Using Equation 16 and the term d' - 3, then:

C' - -8

Since c' - c + p, which is rewritten as -8 - -2 + p, then:

p M -6

From Equation 9, c' - -8, and d' - 3; therefore:

b' - 6

Since bI - b + p and b - 9, then:

p" 6

At a certain adverse pressure gradient, flow will

separate. To find the pressure gradient, Equation 2 is set

to equal zero. This occurs at the point when shear stress,

which is proportional to 4u /4y, equals zero.

Equation 2 at y - 6 ( - 6) yields:

au
- W 6 a

Since p , -2 and a' - S , a + p, then:

S - 2 + (-2)

By letting N equal the adverse pressure gradient, separation

can be found.

N
a - 2 -
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Therefore, N - -12 is the amount of adverse pressure that

will start separation in a flow. The other N-dependent

terms that are associated with coefficients b, c, and d are:

N N N
b I- ; c - -2 + - ; d"1--

2 2 6

Substituting the above terms for coefficents a, b, c, and d

into the equation u /U. derives Pohlhausen's approximate

solution as:

u N 2 3 4211 - 211 + 'q + - (11 _ 312 + 3111 _ 1 411)

UMo 6

By definition the equation, Si 0nf;( - u /U.)dy, is

the displacement thickness. Since M - y /S, then dy - Sd1.

Also, u - U when y - S () - 1). The displacement

thickness is rewritten as:

I - d1l (12)

Substituting and integrating Equation 11 into Equation 12

gives:

• " 1 11 - + -- N - _ +3 -
r6 2 5 24 5

9 3 N

is 126

By definition, S2 mf u /U.(1 - u /U.)dy. Using a similar

substitution for the term dy as was used for S1, yields:

I
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S2 u u.

Finally, after some tedious algebra and integration:

2 1 37 N N2)

63 5 15 144
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APPENDIX B

Solution of the Momentum Thickness Equation

In finding the value of S /9 the term u /U is squared
2

and integrated. From Chapter 3, Equation 33, the relation

is:

d'" = - h(4,,, + 639b + 504c)
Um V 1266

+ b(42ec : 252b) + c(18c)

+ d(149d + 420a +369b + 315c)1

The terms a, b, c, and d have been derived in Chapter 3

and are defined by Equations 23, 22, 21, and 24 respective-

ly. To help organize the mathematical calculations, Equa-

tion I is subdivided into four parts.

Part One

Part One solves the following expression:

a(42a + 630b + 5e4c) (2)

The terms of Part One are expanded as:

428a - (16G8 + 2520N + 42SMN) /D

639b - (-5679N + 756GM) /D

584c - (-15121N + 2016M 2) /D

where M - v06 /v, N - (S2 /v)(dU0 /dx), and

71
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D - 18 + 6H + M2

Substituting the expanded terms into Expression 2 gives:

C 241P26 - 7566N - 262881t + 181441 + 48384M2 + 68486N

- 18986N 2 - 6552MN2 + 45366MN + 12096M2N + 188e8eN

- 315MN 2 + i92M212N 2  + 756M 2 N + 2161M3 N I / D2

Expression 2 is further reduced by combining similar terms

to give:

C 241928 - 15126N + 29232MN + 181449M + 48384M 2 - 189eN2

- 9763MN2 + 1965M2  - 961 3 N + / D2 (3)

Part Two

Part Two solves the following expression:

b(420c + 252b) (4)

Expanding the terms of Expression 4 gives:

420c - (-126MN + 1686M2) /D (5)

252b - (-2268N + 3624M) /D (6)

Substituting Equations 5 and 6 into Expression 4 yields the

result of Part Two which is:

C 11348MN2 - 38241121 + 294 12N2 - 54432MN + 362886M2

+ 2016M 3  / D 2  (7)

Part Three

Part Three solves the expression:

C SOc)



After expanding and combining similar terms, the solution 7

for Part Throw becomes:

E 1,620M 2N2 - 4328M 3N + 288S9M4 I /D 2  (8)

Part Four

Part Four is the expansion of the expression:

d(140d + 429a 4 369b + 315c) (9)

Taking each term from Expression 9 and expanding it gives:

14d- (-186 + 420N + 2861I4 - 848M - 420M 2 )/D()

429a - (16880 + 2529N + 42891N) /D (11)

360b - (-3240N + 4329M) /D (12)

315c - (-94541 + 1269M 2) /D (13)

Substituting Equations 10, 11, 12, and 13 into Expression

yields s

E -55446 + 18SON + 14761M1 - 2988SOM - 5648M 2 + 27729N

- PON 2 _ 73M2 + 104461MN + 2529142N + 184861MN

- 496M 2N2 + 696SM2N + 16814314- 55449M * 1866141

+ 147SM 2N - 2989M2 - 5048143 -27729M
2 + 988M 2N

6819 2 +73511N14- 1844911 - 2529M4 3/D2

After combining all commnon terms, the expression of Part

Four is:

C -55446 * 2952ON + 321961MN - 76329M - 53648M 2 
-99ON 

2

- 133" 42, 11859112N - 4.9M 2N2 + 2415143 14 15499143

- 2529M 4 3 D/ (14)
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Adding Expressions 3, 7, 8, and 14 and then multiplying them

by (1 /1260) gives the expanded version of Equation Is

fl~ )2dl - C 186488 +. 1449ON +. 699911N +. 195126M

+ 31032M2 + 6122 + 393MN 2

+ 381 2N 2 + 11 M3N + 4689M
3

+ 1266M 2N + 3 6 M4 ] / 1269D (15)

By definition the momentum thickness equation is:

S2 d~l

Since Equation 15 from above and Equation 32 from Chapter 3

are terms in the momentum thickness equation, the new equa-

tion for 62 /S with suction and pressure gradient ist

92 (648 + 36N + 9MtN + 168M + 24M 2)

S 6 (18 + 6 + 6M )

- C (186480 + 14461N + 699MN + 10512M + 31032 2

* 612N2 + 393MN2 + 12661N + 38 2 N2 + 11I1M

+ 468M 3 + 36911 4 ) / (1269(18 + &M + 11) 2) I

After combining similar terms, the non-dimensional form for

the momentum thickness equation becomes:
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2" (58464 - 729N + 94894 4032M * 1281612 - 612N2

-363MN42 + 62124 - 38M12N42 *7S134 + 18734 3

+ 144M 4) / (1266(18 + 6 + M 2)2) (16)



APPENDIX C

Derivation of Shear Stress

To find separation pressure gradient, Pohlhausen first

derived the shear stress equation and set it equal to zero.

To have separation the shear stress must equal zero. The

shear stress equation is%

au au 4i:*
r - IL - MP- - (notes J1 14Y - 1 /9)

Taking Equation 11 from Appendix A and substituting it into

the shear stress equation gives:

IL3 4 N 2 3 4,
o -.(21 - 2 + q ) +( - 31 + 1 11

The above equation reduces tot

-0" U0 (21)- (1)It N

Rearranging Equation I gives:

N
-2 + (2)

PUO6

Equation 2 is Pohlhausen's solution for shear stress in

terms of pressure gradient only. Equation 26 from Chapter 3

shows the shear stress aso

76
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TO 24 * 6N + N
-l (3)

ILUN 18 + 6 M. 2

Equation 3 is a function of both pressure gradient and

suction. Pohlhausen's solution is a function of only pres-

sure gradient. To find the pressure gradient at separation

where the shear stress is zero, Equations 2 and 3 are used.

These two equations each equal zero at separation, therefore

their pressure gradients at separation can be found.
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